
  

MULTIMODAL PROOF IN ARITHMETIC 
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This theoretical paper develops further the concept of multimodal proof from the 
perspective of the multimodal paradigm, phenomenology and Luis Radford’s theory 
of knowledge objectification. The study of such proof is motivated by its possible use 
in mathematics education, especially in school, but possibly also with adult students. 
We discuss one type of multimodal proof in arithmetic using a proof principle called 
schematic generalisation. It is argued that this type of proof both can establish truth 
in arithmetic and give phenomenologically explanations.  
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INTRODUCTION 
The concept of multimodal proof was introduced in Rinvold and Lorange (2011). A 
multimodal proof is a generalized proof which beside written symbols and sentential 
reasoning can also include the visual modality, speech, the tactile and motor action, 
(p. 633). The idea of combining sentential and visual reasoning has been developed in 
mathematical logic and its learning by Barwise and Etchemendy (1996) under the 
name of heterogeneous reasoning. Their ideas have been used and followed up by 
several other researchers. An example is Oberlander, Monaghan, Cox, Stenning and 
Tobin (1999) who characterize heterogeneous proofs as multimodal. Several papers 
have followed up the multimodal perspective and Stenning and Gresalfi (2005) has 
applied heterogeneous reasoning to mathematics education, but none of these papers 
regard proof. We will now develop the concept of multimodal proof further within 
the multimodal paradigm of Arzarello and Robutti (2008). As far as we know, no 
other researchers have developed multimodal or heterogeneous proof within this 
framework.  
The multimodal paradigm is an emerging view of thinking and reasoning. It 
combines the embodied mind paradigm and sociocultural theory. Mind is part of a 
physical body, and the cognising man acts physically and verbally in a physical and 
cultural world using artefacts and signs. Thinking is not only internalized speech, 
maybe supplemented by inner visualization, but is linked to all the senses and motor 
action. Thinking is made possible and restricted by our bodily life in the physical 
world, but has reached an advanced level through culturally developed language and 
artefacts. Multimodality is a direct consequence of this view of thinking.  
It can be provocative to ask if proof could be generalized to include non-sentential 
modes of reasoning. The reason is the belief that proof is the core or heart of 
mathematics, and that proof equals formal sentential proof. Formal proof gives the 
subject its unique structure, precision and solidness and has been successful. Fallacies 
and idiosyncrasy have been a problem with visual and intuitive proof. However, we 



  
agree with research that opens for the possibility that some non-sentential proofs are 
legitimate. 

The mere existence of fallacious proofs is no more a demonstration of the illegitimacy of 
diagrams in reasoning than it is of the illegitimacy of sentences in reasoning. Indeed, 
what understanding we have of illegitimate forms of linguistic reasoning has come from 
careful attention to this form of reasoning, not because it was self-evident without such 
attention. (Barwise & Etchemendy 1996, p. 6)  

We study communication and learning of proof by applying the theory of knowledge 
objectification, Radford (2006a, 2006b, 2008). The theory has its roots in Hegel and 
Husserl. Objectification has to do with the learning of the individual when thinking is 
seen to have an intimate and dialectical relationship with the material and cultural 
world, LaCroix (2012). It is a process using semiotic means in order “to draw and 
sustain attention to particular aspects of mathematical objects in an effort to achieve 
stable forms of awareness, to make apparent one’s intentions, and/or to carry out 
actions to attain the goal of one’s activity.”, (ibid). 
Our discussion will be restricted to one type of proof principle in arithmetic called 
schematic generalisation. We look at this through an example proof which is 
normally described as visual or diagrammatic proof. We argue that schematic 
generalisation can establish truth in arithmetic. These kinds of proofs have also been 
studied from the perspective of generic proof, which is a less precise concept. 
Referring to Tall (1979), Aliebert and Thomas (1991) write that “Such a proof works 
at the example level but is generic in that the examples chosen are typical of the 
whole class of examples and hence the proof is generalizable.” Tall (1979) argues 
that generic proofs are explanatory in the sense of Steiner (1978), which writes that 
“It is not, then, the general proof which explains; it is the generalizable proof.” (p. 
144)”. We argue that from the perspective of multimodal proof, proof by schematic 
generalisation are also explanatory in another way, which we call phenomenological 
explanation. A problem with many formal proofs, especially algebraic ones, is that 
the proofs are not explanatory. Students may be able to follow the rules which are 
applied in the proof, but they do not get any reason why the proved theorem is true. 
WHAT IS MULTIMODAL PROOF? 
A common view is that “the proof” can be separated from the activities of presenting 
a proof, finding or creating a proof, and the learning or understanding of a proof. 
Since we do not think “the proof” exists in a platonic world, it has to be physical or in 
the head of a person. The latter alone amounts to idiosyncrasy. From a sociocultural 
point of view “the proof” has to be an artefact which is accessible for public 
validation.  In the rest of this paper proof is seen in this way. For a long period of 
time proof has been written or printed on paper. In this medium visual and sentential 
are the only possibilities. The existence of animation, film and video give a 
possibility of including other modalities, but also challenges the distinction between 
“the proof” and proof presentation. If the presentation of a proof is videotaped, the 



  
record is an artefact. We do not go further into this, but we discuss other modalities 
than the sentential and visual in proving and proof learning. Multimodality in the 
latter kind of activities is less controversial.  
Multimodal or heterogeneous proving is a kind of multimodal reasoning and 
thinking. One core idea of multimodal thinking is that human reasoning always 
applies at least two modalities of thought.  

Multimodality, however, proceeds on the assumption that representation and 
communication always draw on a multiplicity of modes, all of which have the potential to 
contribute equally to meaning. (Jewitt, 2009, p. 1) 

Except some proofs generated by computers, proofs are meant to be read by humans, 
and as such are part of communication. Because of this, words and visual diagrams 
are used together with mathematical formalism in the proofs. But, a common idea is 
that formal proof could be represented without visualisation by mathematical 
formalism only. The concept of visual proof indicates similarly the belief that visual 
arguments can be represented just by diagrams. The phrase “proofs without words”, 
Nelson (1993, 2000), indicates the latter. According to Barwise & Etchemendy 
(1996), heterogeneous proof consists of more than one mode of reasoning, in their 
case primarily the visual and sentential modality. By proof those researches mean 
proof systems. Such a system consists of the allowed rules of inference and the 
allowed objects transformed by the inference rules. Since the formalism of Hilbert 
was developed, the objects of proof systems have mostly been formal sentences. The 
contribution of Barwise and Etchemendy is important for the question of legitimacy 
and possible acceptance of multimodal proof. Proof systems make validation of proof 
easier and also support the comparison with classical proof.  
THE MULTIMODAL EXAMPLE PROOF 
The example proof of our further discussion is given by a visual diagram and an 
explanation by word. As such it is multimodal, but it is open if it can be represented 
by a proof only in the visual mode. The proof is not formal, in the sense that it is not 
based on a proof system, and mathematical symbols are not applied.  
Looking at the diagram in figure 1 below, it is not obvious what it is going to prove.  

 
Figure 1 

To be told that the statement concerns odd numbers may help some readers. The 
diagram shows the square of the odd number five. The diagonal in green consists of 



  
the same number of small squares as the side, and the red small squares above and 
below the diagonal make a pair.  
Each small square in the upper triangle makes a pair with the corresponding 
symmetrically placed small square in the lower one. The complement of the diagonal 
thus is a set of disjoint pairs. Since the diagonal is a set of disjoint pairs together with 
a single small square disjoint from them, the large square is an odd number.  
The argument shows that the square of an odd number is odd. But, we have more. 
The decomposition of the square into its diagonal and a pair of triangular numbers do 
not use that the side is odd, and hence is valid for all natural numbers. This can be 
used to show the opposite implication. If the square is odd, then also the diagonal is 
odd, for taking away a set of pairs from an odd number, results in an odd number. 
Since the diagonal equals the side, the side is odd when the square is odd. Formally 
the implications in both directions can be written 

∀x[Odd(x)↔Odd(x2)] 

RECURSIVE ω -PROOF AND SCEMATIC GENERALISATION 
We argue that the proof principle used in the example proof can be formalized by the 
concept of recursive ω-logic, a proof principle which legitimacy hardly can be 
disputed. Beside this legitimacy argument, we also use ω-logic to make clear what 
the example proof is meant to exemplify. The origin of ω-logic is proof theory as a 
branch of mathematical logic, but the original use, called cut-elimination, is technical 
and outside the scope of this paper.  
Jamnik, Bundy and Green (1997) introduced the formalization by recursive ω-logic 
for diagrammatic proofs like the example proof with the intention to argue that this 
kind of reasoning is legitimate. Each case of the theorem can be proved directly from 
a diagram by geometric operations. One given diagram plays a schematic role, which 
make it possible to generate the other diagrams and the proofs for each case. Those 
authors have developed a system for automated theorem proving called DIAMOND, 
which successfully have turned several diagrammatic proofs into recursive ω-proofs.  
A recursive ω-proof of ∀n φ(n) is a procedure which let us calculate a proof of φ(n) 
for each n. In the example this means that we see the decomposition of the square as 
a procedure which can be done for all possible integer squares. Intuitively, this means 
that we can draw “the same kind of diagram” for all integer squares. In arithmetic 52 

= 2 ⋅  T4 + 5 is certainly not implying the general claim n2 = 2 ⋅  Tn-1 + n, where T4 and 
Tn-1 are triangle numbers. What is different with the diagram is that it shows the 
decomposition to be more than an accidental identity between numbers.  
A direct algebraic proof of φ(n) is also a recursive ω-proof of ∀n φ(n). The use of 
symbolic algebraic variables is based on some rules or properties which are common 
for all numbers in question, for instance the commutative and distributive laws in 
arithmetic. This is seen in the direct example proof D1 of  



  
∀n[(n + 1)2 = n2 + 2n + 1] 

The proof is given by 
D1:  (n + 1)2 = (n + 1) ⋅ (n + 1) = n ⋅  n + n ⋅  1 + 1 ⋅  n +1 ⋅  1= n2 + 2n + 1 

We normally see this as one proof of one conjecture, but an alternative is to consider 
it as a collection of proofs, one for each natural number. For instance the substitution 
of n = 4, gives a proof that (4 + 1)2 = 42 + 2 ⋅  4 + 1.  
Recursive ω-logic is an alternative to induction in the formalization of proofs in 
arithmetic. Indeed it is a stronger principle, because it implies induction in arithmetic. 
Induction is for each arithmetical formula φ the claim that φ(1) and 
∀n[φ(n)→φ(n+1)] entails ∀nφ(n). We get an ω-proof from this by generating proofs 
of φ(n): 
 φ(2) is proved by φ(1) and φ(1) → φ(2) 
 φ(3) is proved by φ(1), φ(1) → φ(2) and φ(2) → φ(3), and so on. 
Technically, induction proofs are a good solution, but typically such proof does not 
give an explanation understandable by students. As an example of the latter we prove 
the statement related to figure 1 by an induction proof IN setting φ(n) to be  
n2 = 2 ⋅  Tn-1 + n, where T0 = 0 and Tn = Tn-1 + n are the triangle numbers inductively 
defined. Using the statement proved in D1, we get  

IN: (n + 1)2 = n2 + 2n + 1 = (2 ⋅  Tn-1 + n) + 2n + 1 = 
2 ⋅  (Tn-1 + n) + (n + 1) = 2 ⋅  Tn + (n + 1) 

The case φ(1) follows also, as can be seen. The statement related to figure 1 can be 
proved by a direct algebraic proof D2 too, but this appears as a rabbit thrown from a 
hat: 

D2: n2 = n2 - n + n = 2⋅  ½ (n - 1) ⋅  n = 2 ⋅  s(n) + n 
Now, s(n) = ½ (n - 1) ⋅  n is always a natural number, since (n - 1) ⋅  n has to be an 
even number. 
PHENOMENOLOGICAL EXPLANATION 
The phenomenology of proof has to do with how proof is experienced. The example 
diagram gives us the experience of knowing, understanding and believing. Jamnik, 
Bundy & Green (1997) formulate this about the same type of diagram,  

 
1 + 3 + 5 + ... + (2n – 1) = n2 

“Not only do we know what the diagram represents, but we also understand the proof 
of the theorem represented by the diagram and believe it is correct (p. 51).” But, the 



  
diagram does not only give subjective belief. It is what Kitcher (1983) calls 
warranted belief (p. 17). The belief has to be justified in a way that is accepted by the 
mathematical society. Recursive ω-logic is one way of giving such a warrant, but an 
alternative place to look for it is embodied cognition. Arithmetic has a 
phenomenological and semiotic foundation which is profounder than axiomatic 
formalisations. According to Longo (2005), mathematics has cognitive roots: 

We cannot separate Mathematics from the understanding of reality itself; even its 
autonomous, “autogenerative” parts, are grounded on key regularities of the world, the 
regularities “we see” and develop by language and gestures. 

This physical and perceptual basis of arithmetic can be used both to argue for the 
legitimacy and the experienced qualities of diagrammatic proofs. The legitimacy 
argument is to show that the kind of reasoning used in the diagrammatic proof is also 
needed to verify the formal axioms of arithmetic, but it is out of the scope and space 
of this paper to go further into this.  
The possibility of arithmetic has to do with the stability of matter, that objects has 
permanence and do not suddenly appear, split or disappear like clouds. It also 
depends on our ability to discern some things as being a collection of objects of the 
same type. Freudenthal (1983, p. 75) points to Euklid book VII as an origin of the set 
or cardinal approach to number, and cites Felix Klein for the idea of numbers as 
collections of things of the same type. The concept of set is based on the invariance 
of physical or visual collections under spatial placement. The multimodal example 
proof is based on perceptible sets and spatial invariance. The objects of same type are 
small squares which together make up a square formed lattice. The decomposition of 
the square in the proof is related to spatial invariance, as it can be seen as moving the 
triangle parts away from the diagonal part. Both the concept of natural number and 
the proof also depends on our faculty of visual pattern recognition. That the proof 
uses the perceptual roots of arithmetic can thus be a reason behind its explanatory 
power. It is a phenomenological explanation not only by giving the experience of 
explanation, but also by using the phenomena behind the conjecture to be proved.  
OBJECTIFICATION IN EMBODIED COGNITION 
From the embodied mind point of view mathematics originates in our perception and 
ordering of physical reality. Even if the connection between parts of advanced 
mathematics and reality is not always obvious, this view makes it natural to look for 
reasoning with a perceptual basis, especially for the learning of the subject. But, we 
know from experience and research that students, or even mathematicians, are not 
able to immediately grasp the intended meaning of a proof from a diagram. This can 
be explained by the multimodality of thinking, that more than one modality is needed, 
but a semiotic approach gets deeper into the learning and communication aspect. 
Radford’s theory of knowledge objectification is a theory about how individuals can 
be able to notice and make sense of what they do and see.  



  
..., objectification becomes related to those actions aimed at bringing or throwing 
something in front of somebody or at making something apparent −e.g. a certain aspect 
of a concrete object, like its colour, its size or a general mathematical property. Now, to 
make something apparent, students and teachers make recourse to signs and artefacts of 
different sorts (mathematical symbols, graphs, words, gestures, calculators and so on). 
These artefacts, gestures, signs and other semiotic resources used to objectify knowledge 
I call semiotic means of objectification... (Radford, 2006b, p. 6) 

The means of objectification are actions and semiotic resources. The example proof 
was given by a diagram and words. The words are semiotic resources which direct 
the attention of the reader to the appropriate aspects of the diagram. The concepts 
‘triangle’ and ‘diagonal’ help the viewer to see the large square as composed of three 
parts. In the diagram also colours are used to make apparent the decomposition of the 
square into two triangle numbers and the diagonal, and also show how the small 
squares above and below the diagonal make pairs.  
As an alternative or supplement, a physical diagram can be made of unifix or 
multilink plastic cubes. Then one of the triangular parts can be laid onto the other, 
both showing congruence and how to make pairs of cubes. We can pair a cube with 
the cube lying above it. This physical approach makes the red squares superfluous. 
These red squares are confusing as long as communication of the decomposition is in 
focus, so it would be an advantage if they could be painted yellow. Showing 
congruence does not mean proving, but pointing to. What looks like or feels like 
equality, can mistakenly be taken by the student to be a proof of equality. The 
physical process of making pairs of corresponding upper and lower small squares in 
the triangles, is a proof when the side equals five, but its generalisation requires an 
argument. A general proof requires another way of seeing. 
The explanation by words introduces a process ordered in time, in which different 
aspects and parts of the diagram are in the foreground. Concepts like ‘odd number’ 
and ‘set of pairs’ helps the viewer to see the diagram as a general pattern. It is 
possible for a student to grasp everything else, but to see the diagram just as the case 
of five times five.  It is a well known misconception among students that showing 
one or a few cases is enough to prove a result. We know that many mathematically 
trained persons experience to see a general proof through diagrams like the one in the 
example, but we also know that this does not come easy to many students. It is 
necessary to see the diagram like an informal ω-proof, that is, a procedure for 
generating the proof in all other cases.  A possibility is to let the students draw and 
paint the five by five square and, notice how this is done and ask them to draw and 
paint squares of other sizes. Alternatively, the students can build squares by coloured 
plastic multilink cubes. The dynamic process of painting or building makes it more 
likely to see an algorithm than looking at a static diagram.  
Husserl made a distinction between simple and categorial intuition. The latter means 
to ‘intuite’ the conceptual, the general or the Aristotelian form through seeing 
something concrete. According to Cobb-Stevens (1990), “Rather than presenting 



  
some particular thing, say a red chair, categorial intuition presents the chair’s being 
red, the red quality’s belonging to the chair (p. 44).” By intuition Husserl underlines 
the richness or fullness of actual experience compared to thought and speech. Cobb-
Stevens exemplifies this as the difference between strolling through the streets of a 
foreign city and vague plans of a visit (p. 43). The grasping of the general in the 
multimodal example proof in visual or physical version probably has the same 
richness compared to the induction and direct algebraic proofs IN and D2. 
ALGEBRAIC AND VISUAL PROOF COMPARED 
The visual or physical multimodal proof related to figure 1 seems to work 
considerably better than the algebraic alternatives in order to give students meaning 
and richness of experience when understood or objectified. The former kind of proof 
gives at least another kind of explanation, which for many students probably is better. 
Since warrant for truth is the simultaneous establishing of truth and meaning, we 
think that even in this aspect multimodal proof is a good alternative. However, as 
some hints have indicated, objectification is not straight forward to achieve. For 
instance it can be difficult to see the conjecture to be proved directly from diagram 1, 
and seeing the diagram as general is demanding. Algebraic proof has some clear 
advantages compared to visual proof. Algebraic proof in arithmetic has well 
established proof systems which have an undisputed status among mathematicians. 
The system of algebraic and arithmetic signs are standardised, used almost 
everywhere and are institutionalised by schools, universities, books etc.  
Like the visual diagram 1, also the arithmetical and algebraic notations are spatial and 
compact. The latter are not phenomenological or iconic, but symbolic. The signs 
together make a system giving meaning to terms and statements. Algebraic identities 
like 2x + 3x = 5x are linked to the objectified meaning of 2 + 3 = 5 and the addition 
operator. Even the algebraic system has a link through objectification to physical and 
perceptual phenomena behind arithmetic, but not in the direct and full way as in 
categorial intuition. A relevant reference for the spatial aspects of algebraic 
symbolism is Bergsten (1999). As long as the complexity of an algebraic statement or 
a diagram is restricted, both have a good potential of objectification. Ordinary 
language composed by words lacks spatiality and compactness and are delegated to 
an intermediate role in learning and objectification. Proofs given by words are not 
alone a good way for students to objectify proofs. But, neither algebraic formulas nor 
diagrams give all the necessary information directly. Visual proof has to be 
supplemented by symbols, standards and transformation rules which make 
communication, objectification and validation easier. 
CONCLUSION AND FURTHER RESEARCH 
This paper has developed the concept of multimodal proof further by a discussion and 
clarification of what a multimodal proof is. One conclusion is that a multimodal proof 
is an artefact, but that the artefact of video challenges the distinction between proof 
and proof presentation and opens for other modalities than the visual and sentential. It 



  
is discussed how a type of visual proof involving a kind of schematic generalisation 
can be modelled and legitimated by recursive ω-logic. The learning and recognition 
of the generality of the proofs are studied by the theory of objectification. A new 
contribution is how building of physical versions of the diagrams makes the 
objectification easier by placing the procedural aspects in the foreground, giving a 
link to recursive ω-logic. The explanatory power of the visual proof has been 
discussed from the perspectives of phenomenology, categorial intuition and 
objectification. That the perceptual and cognitive aspect of the proof also is lying 
beyond the concept of number is suggested as a reason for the strikingly potential of 
explanation. A drawback of visual proof is the lack of standardisation, proof systems 
and semiotic signs making both interpretation and validation of the proofs easier. The 
development of these missing aspects both theoretically and by design is central in 
further research. 
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