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University mathematics programmes cater, in various ways, to future teachers of 
mathematics. The gap between the university contents and methods on one hand, and 
on the other hand secondary school mathematics, is investigated in studies of how 
students experience the beginnings of university mathematics programmes. Here we 
consider the gap as it appears at the other end of the students’ experience at 
university, as they try to relate their new mathematical knowledge to contents and 
methods in secondary school teaching. The main points of the paper are to introduce 
a theoretical model to analyse the changes in relation to mathematical knowledge 
which may be operated at that point, and to show its use on a significant example (the 
construction of exponents or, more generally, of the exponential function). 
AN DOUBLE TRANSITION PROBLEM 
A large part of the existing research on university mathematics education is devoted 
to the study of the specific challenges students face at the beginning of a study 
programme with a strong or exclusive mathematical component (see Gueudet, 2008 
for a review of such research, as well as several papers in the CERME7 version of 
this working group). These challenges are institutional transition problems since they 
arise as students change institution, and several challenges appear to be related to 
major differences between emphases and methods of teaching in high school and 
university. At the opposite end of the university programme, the students face another 
type of institutional transition, namely that from academic mathematics to various 
professions. In this paper we are interested in the nature of this second kind of 
institutional transition, and in particular how a mathematics programme may seek to 
“smoothen” it in view of the profession of secondary mathematics teacher. 
Already Klein (1908, p. 1) observed that students taking this direction may face a 
“double discontinuity” as they move from high school to university, then back again: 

At the beginning of his studies, the young student is faced with problems that in no way 
remind him of the [mathematical] things he worked with in school; naturally he then 
forgets these matters quickly and thoroughly. If he becomes a teacher after having 
finished his studies, he must suddenly teach this time honoured elementary mathematics 
in a school like fashion; and as he cannot by himself see the connection between this task 
and university mathematics (...) his university studies become just a more or less pleasant 
memory which has no influence on his teaching. (Translated by the author) 

Indeed in many countries, secondary school teachers receive their mathematical 
education in study programmes geared towards academic “pure” mathematics. The 
second discontinuity or gap, from university mathematics to secondary school 
mathematics, appears as a problem to the extent the students’ outcome from the 



  
programme does not function as a resource for teaching mathematics at the secondary 
level. While there is extensive research on how teachers experience the transition 
from teacher education into teaching practice (see e.g. Winsløw, 2009, for an 
overview), there remains a practical need for systematic didactical research on how 
standard undergraduate mathematics is, or could be, developed in view of facilitating 
its use by students in inquiries related directly to high school mathematics.  
This problem is clearly at the borderline between research on mathematics teacher 
education and research on university mathematics education. But it is of relevance to 
the latter for at least two reasons: university mathematics programmes often include 
courses specifically designed to treat elementary mathematics “from a higher 
viewpoint”, as Klein (1908) put it in his book title; and also one may speculate that 
the two “smoothing problems” might usefully be approached together. 
In this paper, we present a new theoretical model of the second transition, with a 
concrete case to illustrate it. We first introduce the institutional context in which we 
have considered the problem (a capstone course). Then we explain the theoretical 
model in order to situate this somewhat arbitrary context within the general problem 
of institutional transition and the corresponding changes in relation to mathematical 
knowledge. Finally, we explore a case which is both illustrative and important in its 
own right, namely the work with exponential functions in a capstone course.  
We emphasize that the primary aim of this paper is to present the problem (of 
transition from U to HS) and our theoretical model of it, while the case serves to 
illustrate both through a concrete didactic design, its premises, and some observations 
of its effects. The case is not an empirical study; it helps to substantiate the model. 
CAPSTONE COURSES AND THEIR COUSINS 
Universities operate with different traditions and methods across the world. In 
American colleges and universities, there is a long standing tradition of “senior year 
programs”, which include the so-called “capstone courses”: 

The capstone course typically is defined as a crowning course or experience coming at 
the end of a sequence of courses with the specific objective of integrating a body of 
relatively fragmented knowledge into a unified whole. As a rite of passage, this course 
provides an experience through which undergraduate students both look back over their 
undergraduate curriculum in an effort to make sense of that experience and look forward 
to a life by building on that experience (Durel, 1993, 223). 

In mathematics programmes, capstone courses are not always aimed at preparing 
students to a life as mathematics teacher, but many are, as evidenced by the offer of 
text books such as Usiskin, Peressini, Machisotto and Stanley (2003) or Sultan and 
Artzt (2011). These texts contain exposition and exercises related to critical areas of 
secondary mathematics such as trigonometry, number systems or plane geometry, but 
from the “higher viewpoint” of academic mathematics, just as in Klein’s (1908) 
treatise which had similar goals (for its time). In fact, a related feature of the German 



  
Stoffdidaktik (content didactics) tradition is to make use of academic mathematics in 
the development and study of secondary school mathematics. One could mention also 
the concours system, a kind of preservice teacher examination in France and other 
Romance countries, as an example of transition measures of this kind which are more 
or less integral parts of the university curriculum within a discipline. 
Our context 
At the University of Copenhagen, almost all mathematics courses focus on inducing 
students into the methods and theory of the academic disciplines in question. Only a 
minority (~40%) of the students become teachers, and many students are undecided 
about career plans during most of their study. Even the options to specialize in the 
history or didactics of mathematics (at the master level) are aiming to develop 
familiarity with research and its methods, rather than professional skills as a teacher.  
It should be noted here that to become a high school teacher in Denmark, one needs 
to study two disciplines, normally a major (for 3-4 years) and a minor (1½-2 years). 
Students who do a minor in mathematics get to study the first parts of the bachelor 
programme in mathematics, including abstract algebra, analysis and differential 
geometry. For some of these students, that material appears both relatively advanced 
and rather disconnected from what they perceive as relevant to teach mathematics in 
high school. Then, a few years ago, a course on “Mathematics in a teaching context” 
(UVmat) was introduced as an option at the bachelor level, primarily in view of 
students who take mathematics as a minor (but open to others interested in teaching). 
In recent years it was co-taught by the author and a colleague; in the version of 2011-
2012 it was based on Sultan & Artzt (2011). The course has gradually adopted the 
idea of serving as a capstone course with the following aims: 

- Identifying and filling serious gaps in the students’ knowledge of select areas 
high school mathematics which remain after taking more advanced courses; 

- Treating selected topics – mainly from high school analysis and algebra – but 
from “from a higher viewpoint” (cf. Klein, 1908), in an attempt to illustrate 
how the material learned in university can serve also when working with more 
elementary topics in view of teaching. 

To sharpen the meaning of these points further, we introduce some elements of the 
anthropological theory of didactics as well as a more general model of the double 
transition mentioned in the introduction. 
THEORETICAL MODEL 
It is a basic contention in the anthropological theory of didactics (Chevallard, 1991, 
206-207) that the relation of an individual to an object o of knowledge is strongly 
conditioned by the institution I in which this object of knowledge lives. For a didactic 
analysis, we usually consider the individual as occupying a position p within the 
institution, for instance as a first year student, and study the relation RI(p, o) of this 
position in the institution to o, where the subscript stresses that p and o depend on I.  



  
This abstraction is by no means artificial. In fact, data may inform us, with more or 
less precision, about the relation of smaller number of student to the practice and 
theory related to Taylor series, or a similar object of knowledge o that of course must 
be more precisely delimited. But our real aim is usually more general, such as 
investigating the relation to o of first year students in the University of Copenhagen – 
or perhaps a generic university of a similar kind.  
Such a relation can, indeed, exhibit many variations, which are not exhausted by 
simple measures of “mastery” of target knowledge. The relation involves also, for 
example, the status assigned to o with respect to other knowledge objects, which may 
depend highly on p and therefore also on the institution I. For instance, to Spanish 
high school students, limits of functions may end up with an exclusive and marginal 
status as a formal preliminary to defining derivatives of a function (Barbé et al., 
2005). Another important variable in the relation is the modality of access which I 
enables p to have to o, for instance, solving exercises, study of a textbook, 
autonomous inquiry etc. 
To model the “objects of knowledge”, Chevallard (1999) introduced the notion of 
praxeology (do read Barbé et al., 2005 if you are unfamiliar with this). In this model, 
an object of knowledge o is modeled as praxeologies which consist of two related 
parts: practical knowledge (abbreviated P) such as a method to estimate the error of a 
given Taylor approximation of a given function, at a given point; and theoretical 
knowledge T, such as a way to explain and justify P. In fact, the knowledge object o 
which we consider may be formed by a whole collection of praxeologies (P, T).  
When considering the double transition outlined in the previous section we are 
actually investigating transitions of the type RHS(s,o) → RU(σ,ω) → RHS(t,o) where 
the institutions are that of a more or less well defined high school (HS) and university 
U; also, s and σ refer to more or less delimited positions as student in these 
institutions, and t to the position as teacher in HS. Finally o and ω are knowledge 
objects of a more or less comparable nature. Chevallard (1991) developed the notion 
of didactic transposition to explain how a knowledge object is transformed in view of 
enabling students in an institution such as U or HS to establish relations with it; an 
important case is the transposition of praxeologies ω developed and taught at 
universities into praxeologies o taught in schools. The second transition above is, 
clearly, of another nature, and takes place at another pace; still, the success of the 
didactic transposition certainly depends on the relation RHS(t,o) and this, in turn, rely 
in part on a past relation  RU(σ,ω) with the transposed object ω, and with teachers 
now in position t after having been in the position σ.  

In capstone courses, we focus on students in position σ and consider how RU(σ,ω) 
could be developed in view of a future situation of the students in a position t, and we 
try to prepare bridges between relations of type RU(σ,ω) and a more or less 
hypothetical relation of type RHS(t,o). As a matter of fact, the relation may not be 
hypothetical at all. Due to an increasing shortage of graduates to fill positions in 



  
Danish HS, some of the students in UVmat are already part time high school 
teachers. This clearly is a special situation worth particular attention as these students 
are already experiential in some of the challenges transitions of type RU(σ,ω) → 
RHS(t,o) which are our topic here. However, we do not focus on this situation here. 
CASE STUDY: EXPONENTS AND EXPONENTIAL FUNCTIONS 
We now consider, as knowledge object o, the approaches to exponents ab currently or 
potentially found in Danish high school (HS), and we consider the set of knowledge 
objects ω more or less close to o, which are taught in the bachelor programme in 
mathematics at the University of Copenhagen (U). Our focus is on how a capstone 
course such as UVmat may contribute to (and draw on) RU(σ,ω) in order to prepare 
the transition to the relation RHS(t,o).  
High school approaches to exponentiation 
There is a certain variation in the approaches to exponentiation found in text books 
and, conceivably, therefore in the relation students and teachers in HS will develop to 
o. Most textbooks define ax for rational x, using more or less elaborate justifications 
of the formula n mnm aa =/  based on the definitions of a1/n and an. Given that real 
numbers and limits are not rigorously treated in HS, the variation lies in how the 
books explain the passage to real exponents. Here are some typical examples: 

The power is calculated by approximating the exponent by a finite decimal number. How 
many decimals you include depend on the required accuracy (Timm & Svendsen, 2005, 
26; translated from Danish by the author) 

In Chapter 3 we saw how to calculate powers where the exponent is integer and positive, 
0, integer and negative, and rational (fraction). Strictly speaking we have not explained 
the meaning of a symbol like 37 but we assume CAS will take care of this. (Carstensen, 
Frandsen & Studsgaard, 2006, 82; translated from Danish by the author) 

It is also possible to extend the notion of power to the case of arbitrary exponents like for 
example π and 11 but it will take us too far to do that here (Brydensholt & Ebbesen, 28; 
translated from Danish by the author) 

After this, all books operate with exponential functions as functions defined on ℝ. 
There is nothing surprising about this and one should not overestimate the impact on 
RHS(s,o) of the differences like the above. Judging from informal questioning at 
lectures over the past few years, few students recall the definition of powers with 
rational exponents, and even less wondered how to define ax properly and in general.  
Exponentiation in the mandatory bachelor curriculum 
All texts used in U simply assume the existence of exponential functions as part of 
the prerequisites from HS. Students are also assumed to know certain basic properties 
of exponential functions, such as continuity, derivatives and other specific rules, like 
ax+y=axay for a ≥ 0 and x, y real. Exponential functions appear frequently in the first 
courses on calculus and analysis – for instance, in examples of calculating Taylor 



  
series, as solutions to differential equations, as building blocks in functions of several 
variables and complex functions, as a tool to study complex numbers (polar form) or 
functions, etc. Briefly speaking, in RU(σ,ω) the meaning and basic properties of ax 
(for real a, x) are certainly available, but they are neither questioned nor explained.  
Exponentiation in UVmat 
There are several classical ways to approach the construction of ax for a>0 and x real, 
some of which are elegant but out of reach in the first year of HS when this object is 
first encountered. In UVMat, it is a specific point to develop RU(σ,ω) so as to know 
and relate five of these, based on 

(1) “Direct” construction, starting with the case x∈ℕ and extending first to ℚ, 
then to ℝ; 

(2) The inverse function to loge , itself constructed via loge(x) = ;
1∫
x

t
dt  

(3) The initial value problem dy/dx = y,  y(0) = 1 ; 
(4) The functional equation or “property” f(x+y) = f(x)f(y); 

(5) The power series ∑
∞

=0 !k

n

n
x . 

Here, (4) can be used to show uniqueness of a certain form, detailed in the next 
subsection, while existence must be based on other methods. We notice that (1) is 
similar to the brief explanations found in o (first year) as explained above, but it still 
relies on deeper properties of ℝ that are may be identified in ω but not in o, while (2)-
(5) are all entirely beyond the scope of o. 
Indeed, giving a complete account of (1) is somewhat challenging even based on 
RU(σ,ω). The textbook by Sultan and Artzt (2011, pp. 242-250) provides such an 
explanation up to rational exponents. For the last step, it provides an insufficient 
“proof” while acknowledging that “there are some serious issues with this, and to get 
into all of them would be beyond the scope of this book” (p. 250). The serious issues 
concern the equation nn qq aa limlim = for a sequence (qn) of rational numbers, assumed in 
the proof with no warranty even of the existence of the first limit and its 
independence of a choice of sequence (qn) tending to a given real number. While one 
may argue that this could be sufficient for a high school teacher, RU(σ,ω) can be 
developed to give a complete explanation by making use of the following property of 
ℝ, taught in first year and equivalent to the completeness property : every ascending 
sequence of real numbers with an upper bound, has a limit.   
From a didactic viewpoint, the real challenge lies of course in the effective extension 
of RU(σ,ω) and its possible consequences for RHS(t,o). In a recent version of the 
course (2011), we chose to present (1), (2) and (5) in lectures, while leaving the 
approaches (3) and (4), and the links between them, to an exercise. We now take a 
closer look at the tasks left to students and the outcomes.  



  
Students’ turn 
The 25 students worked on the following exercise (part of a weekly assignment for 
group work; translated from Danish and slightly rephrased to be self-contained): 

a) Show that if a function f : ℝ→ℝ satisfies f(x+y) = f(x)f(y) for all x, y∈ℝ  then 
f(0) = 1 or f is the zero function. Give a (non-zero) example of such a function. 

b) Show that if a function as in a) is differentiable in 0, then it is differentiable on 
all of ℝ. [Hint: look at (f(x+h)-f(x))/h for h ≠ 0.] What is the derivative of f ? 

c) You know from calculus that the initial value problem dy/dx = ky, y(0) = 1 has 
the unique solution y = ekx . Use this together with the results obtained in a) and 
b) to provide a characterization of exponential functions. 

The point in b) is that the condition implies that f ʹ′  exists and equals ff ⋅ʹ′ )0( in all 
cases. It is the existence of a solution, mentioned in c), which the “real meat” of the 
result assumed, as a special case of Picard’s theorem which is treated in first year 
calculus. The uniqueness, which is the main point here, is quite easy to prove.  
The first questions are technical questions and most groups were able to solve them 
on their own, with a few minor lapses like forgetting the case f = 0 in b). However, 
the third point proved to be challenging for almost all groups. The challenge seems to 
be the word “characterization” and also to link the form ekx to the notation ax 
privileged by the text book. In fact, the theoretical point of view involved with 
recognizing and formulating a “theorem” is not frequently required from students in 
RU(σ,ω) at least in the work prior to UVmat. On the other hand, with the result 
recalled from calculus and the results proved before, there is – from a technical point 
of view – a small step to realize and prove that a function f is an exponential function 
(i.e. f(x) = ax for some a ≥ 0) if and only if f  is differentiable at 0 and satisfies  f(x+y) 
= f(x)f(y) for all x, y∈ℝ. Of course there are other possible formulations, and in this 
case we made a point of leaving the formulation open so that alternatives could 
appear (in fact they did). For instance, the term “exponential functions” could be 
defined as including the zero function, or not. 
The students have access to supervision during their work, and many needed help to 
even get started on part c) of the task. Looking closer at students’ final formulations 
of theorems, we find a number of shortcomings that are of a more logical nature. 
Here is one example (translation to the left, the original in Danish to the right):  

Theorem: Let f : ℝ→ℝ be a function. Then the 
following propositions are equivalent:    
1)  f  satisfies f(x+y) = f(x)f(y) for all x, y∈ℝ 
and f is differentiable at x = 0  
2) f satisfies the differential equation  
df/dx = k⋅f(x),  f(0) = 1 
∀k∈ℝ 
3) f(x) = ekx  , k∈ℝ  



  
For instance, we note the strange appearance of the letter k in part 2) and 3). In 2) an 
existential quantifier (∃) would be more relevant than the universal (∀), while in 3), 
the unspecified status of the letter k is just as problematic. On the other hand, it 
appears from the students’ proof that these points are really mainly of a formal 
nature. Indeed, many students produced essentially sound proofs despite occasional 
lacks of clarity in their statements, as above.  For these students, we can focus on the 
formal features of mathematical expression which are, of course, of special 
importance to RHS(t,o) regardless of the piece of knowledge o involved, as the teacher 
should not only be able to express formal relations with a variation of formality while 
retaining basic correctness, but should also be capable of assessing less correct ones. 
For other groups of students – representing roughly a quarter of the 25 students – 
there appear to be real challenges even in the parts of the reasoning that are 
completely within the kind of arguments that appear in HS text books. As an 
example, one group did not only formulate a “Theorem” which is formally incorrect, 
but also provided a proof that is flawed from the first lines, as the following excerpt 
(translated into English) shows: 

Theorem: An arbitrary function f : ℝ→ℝ  which is differentiable in f(0) and satisfies 
f(x+y) = f(x)f(y), f(0) ≠ 0 for all x, y∈ℝ  , is of the form ekx  

Proof: A function f satisfying f(x+y) = f(x)f(y) could be the exponential function. We 
therefore let f(x) = ekx , f(y) = eky in the rest of the proof. (…) f also satisfies f(0) = 1 since 
this is well known for the exponential function and can be easily seen by:  

If 01)( 0)( ≠===−⇒−= ⋅− kxxk eexxfxy  
(…) [The group goes on to show, by a lengthy calculation repeating parts of the 
argument from b) in the special case f(x) = ekx, that f satisfies the differential equation 
df/dx = kf. They conclude as follows] 
From Picard’s theorem we know that for all real numbers k there is one and only one 
solution to dy/dx = ky satisfying y(0) = 1. As we have shown the exponential function 
satisfies this we know that the exponential function is the only one satisfying this, and the 
theorem is proved. 

For students who produce “proofs” like this one, even formulating autonomously a 
proof within the core contents of o is likely to be a serious challenge, and one could 
say that the task c) is perhaps missing the level at which they need to improve their 
relation to basic HS knowledge. Fortunately, UVmat also offers many much simpler 
tasks and discussions, focusing more directly on o, such as a) and b), which in fact 
were solved almost perfectly by all groups, including those who failed on c). 
PERSPECTIVES AND CONCLUSION 
All of the five approaches (1)-(5) involve technical work that is to some extent 
beyond RHS(s,o) ; and as power series are not treated in HS, (5) is perhaps of little 
significant importance to RHS(t,o). The other four can strengthen RHS(t,o) in the sense 
of providing extensions or alternatives to standard presentations. In fact, the above 
tasks do not go outside the formal boundaries of the HS curriculum which does 



  
include a formal definition of derivative as well as (at the most advanced level) 
simple differential equations. The main point of including in RHS(t,o) alertness to the 
non-triviality of o from a mathematical point of view – which is, more or less, absent 
in RU(σ,ω) – could of course be achieved just by working on (1). However, to include 
alternatives such as (2), (3) and (4), which are strongly related to more advanced 
parts of the HS curriculum, is clearly of merit to RHS(t,o) as well. For instance, a 
rigorous approach to integrals has been part of the HS curriculum and might become 
part of it again, with the increasing use of computer algebra systems to take care of 
calculations; and then (2) would be a reasonable and elegant way to make up for the 
shortcomings of o based on (1), including the ease with which fundamental properties 
of exponential functions may be derived  using this construction. 
It is interesting to reflect on the difficulty which students had with c) even after 
solving a) and b) correctly. This exemplifies a phenomenon which we have noticed 
also in regular, semi-advanced analysis courses, namely a transition which occurs 
within U rather than as a result of changing institution. These transitions have to do 
with the kind of relation RU(σ,ω) students need to develop to a university situated 
mathematical praxeology ω. In the terminology of Winsløw (2008) the transition is 
said to be of type I if theory is to be used and operated with (by students); it is said to 
be of type II when tasks require autonomous development of theory.  
In a) and b) students are faced with relative precise tasks, which – although they do 
involve the theoretical level of ω – can be carried using familiar techniques 
(operations with the definition of derivative etc.). However, the task c) is less 
“precise” and students have no familiar technique to solve it, namely to formulate and 
prove a “characterization of exponential functions”. This kind of task is indeed 
relevant to the position RHS(t,o) of a teacher relative to a piece of knowledge o, such 
as explaining the sense in which a property (to be precisely defined, as part of the 
task!) characterizes a class of mathematical objects (equally to be defined). Thus, 
while the relation RU(σ,ω) necessary to solve a) and b) is already different from 
RHS(s,o), this is not so much due to a difference between o and ω, but because of the 
fact that theory (definitions, proof based on limit operations) has to be drawn upon by 
σ but usually not by s. On the other hand, going from b) to c) represents an instance 
of the transition RU(σ,ω) → RU

*(σ,ω) where the asterisk indicates autonomy with 
respect to the theoretical level of  ω; notice that this is a transition of type II in the 
sense of Winsløw (2008). We argue that RU

*(σ,ω) is more relevant for a “mature” 
teacher relation RHS(t,o) than RU(σ,ω). While a capstone course may have other 
agendas as well, this is an important point in many of the tasks proposed to students 
in UVmat, the main difference from other mathematics courses in the programme 
being that ω remains elementary and close to a corresponding o in HS. 
By way of conclusion, we hypothesize that in general, the second institutional 
transition RU(σ,ω) → RHS(t,o) referred to in the introduction is not only very different 
from the first institutional transition RHS(s,o) →RU(σ,ω), it is also closely linked to 



  
institutionally internal transitions of type II within the university programme (in the 
above notation, RU(σ,ω) → RU

*(σ,ω)). These are in general very hard to achieve (cf. 
Winsløw, 2008). The aim of a capstone course could be – among other things – to 
achieve it, not in general, but for as selection of mathematical praxeologies ω close 
(if not identical) to praxeologies o which are, or could be, developed in high school. 
In short, a capstone course could strive deliberately to get students started in 
autonomous work with theoretical parts of the academic mathematical praxeologies ω 
that are most directly related to school mathematics praxeologies o. 
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